Bifurcation Analysis of Periodic Motions Originating from Regular Precessions of a Dynamically Symmetric Satellite


    2019, Vol. 15, no. 4, pp.  593-609

    Author(s): Sukhov E. A.

    We deal with motions of a dynamically symmetric rigid-body satellite about its center of mass in a central Newtonian gravitational field. In this case the equations of motion possess particular solutions representing the so-called regular precessions: cylindrical, conical and hyperboloidal precession. If a regular precession is stable there exist two types of periodic motions in its neighborhood: short-periodic motions with a period close to $2\pi / \omega_2$ and long-periodic motions with a~period close to $2 \pi / \omega_1$ where $\omega_2$ and $\omega_1$ are the frequencies of the linearized system ($\omega_2 > \omega_1$).
    In this work we obtain analytically and numerically families of short-periodic motions arising from regular precessions of a symmetric satellite in a nonresonant case and long-periodic motions arising from hyperboloidal precession in cases of third- and fourth-order resonances. We investigate the bifurcation problem for these families of periodic motions and present the results in the form of bifurcation diagrams and Poincaré maps.
    Keywords: Hamiltonian mechanics, satellite dynamics, bifurcations, periodic motions, orbital stability
    Citation: Sukhov E. A., Bifurcation Analysis of Periodic Motions Originating from Regular Precessions of a Dynamically Symmetric Satellite, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 4, pp.  593-609
    DOI:10.20537/nd190419


    Download File
    PDF, 2.03 Mb

    References

    [1] Duboshin, G. N., “On Rotational Movement Of Artificial Celestial Bodies”, Bull. ITA AN SSSR, 7:7 (1960), 511–520 (Russian)  zmath
    [2] Kondurar, V. T., “Particular Solutions of the General Problem of the Translational-Rotational Motion of a Spheroid Attracted by a Sphere”, Sov. Astron., 3:5 (1960), 863–875  mathscinet  adsnasa; Astron. Zh., 36:5 (1959), 890–901 (Russian)  adsnasa
    [3] Beletsky, V. V., Motion of a Satellite about Its Center of Mass in the Gravitational Field, MGU, Moscow, 1975, 308 pp. (Russian)  adsnasa
    [4] Chernous'ko, F. L., “On the Stability of Regular Precession of a Satellite”, J. Appl. Math. Mech., 28:1 (1964), 181–184  crossref  mathscinet; Prikl. Mat. Mekh., 28:1 (1964), 155–157 (Russian)
    [5] Lyapunov, A. M., The General Problem of the Stability of Motion, Fracis & Taylor, London, 1992, x+270 pp.  mathscinet  zmath
    [6] Sokol'skiy, A. G. and Khovanskiy, S. A., “Periodic Motions Close to Hyperboloidal Precession of a Symmetric Satellite in Circular Orbit”, Kosmicheskie Issledovaniya, 17:2 (1979), 208–217 (Russian)  adsnasa
    [7] Markeev, A. P., Linear Hamiltonian Systems and Some Problems of Stability of the Satellite Center of Mass, R&C Dynamics, Institute of Computer Science, Izhevsk, 2009, 396 pp. (Russian)
    [8] Markeev, A. P. and Bardin, B. S., “On the Stability of Planar Oscillations and Rotations of a Satellite in a Circular Orbit”, Celest. Mech. Dynam. Astronom., 85:1 (2003), 51–66  crossref  mathscinet  zmath  adsnasa
    [9] Bardin, B. S., “On Orbital Stability of Planar Motions of Symmetric Satellites in Cases of First and Second Order Resonances”, Proc. of the 6th Conference on Celestial Mechanics, The 6th Conference on Celestial Mechanics (Señorio de Bértiz, 2003), Monogr. Real Acad. Ci. Exact. Fís.-Quím. Nat. Zaragoza, 25, eds. J. Palacian, P. Yanguas, Real Acad. Ci. Exact. Fís.-Quím. Nat., Zaragoza, 2004, 59–70  mathscinet
    [10] Markeyev, A. P., “Non-Linear Oscillations of a Hamiltonian System with $2:1$ Resonance”, J. Appl. Math. Mech., 63:5 (1999), 715–726  crossref  mathscinet; Prikl. Mat. Mekh., 63:5 (1999), 757–769 (Russian)  mathscinet
    [11] Bardin, B. S. and Chekin, A. M., “Non-Linear Oscillations of a Hamiltonian System in the Case of $3:1$ Resonance”, J. Appl. Math. Mech., 73:3 (2009), 249–258  crossref  mathscinet  zmath  elib; Prikl. Mat. Mekh., 73:3 (2009), 353–367 (Russian)  mathscinet  zmath
    [12] Bardin, B. S., “On Nonlinear Motions of Hamiltonian System in Case of Fourth Order Resonance”, Regul. Chaotic Dyn., 12:1 (2007), 86–100  mathnet  crossref  mathscinet  zmath  adsnasa  elib
    [13] Bardin, B. S., “On the Orbital Stability of Periodic Motions of a Hamiltonian System with Two Degrees of Freedom in the case of $3:1$ Resonance”, J. Appl. Math. Mech., 71:6 (2007), 880–891  crossref  mathscinet  elib; Prikl. Mat. Mekh., 71:6 (2007), 976–988 (Russian)  mathscinet  zmath
    [14] Sukhov, E. A. and Bardin, B. S., “Numerical Analysis of Periodic Motions of a Dynamically Symmetric Satellite Originated from Its Hyperboloidal Precession”, Inzhenern. Zhurnal: Nauka i Innovatsii, 2016, no. 5(53), 10 pp. (Russian)
    [15] Sukhov, E. A. and Bardin, B. S., “On Periodic Motions Originating from Hyperboloidal Precession on a Symmetric Satellite”, Abstracts of the 13th All-Russian Conf. on Problems of Dynamics, Physics of Plasma Particles and Optoelectronics, The 13th All-Russian Conf. on Problems of Dynamics, Physics of Plasma Particles and Optoelectronics (Moscow, RUDN, 2017)
    [16] Sukhov, E. A. and Bardin, B. S., “Numerical and Analytical Plotting of Periodic Motion and Investigating Motion Stability in the Case of a Symmetric Satellite”, Inzhenern. Zhurnal: Nauka i Innovatsii, 2017, no. 11(71), 3 pp. (Russian)  mathscinet
    [17] Deprit, A. and Henrard, J., “Natural Families of Periodic Orbits”, Astron. J., 72:2 (1967), 158–172  crossref  adsnasa
    [18] Karimov, S. R. and Sokolskiy, A. G., Method of Numerical Continuation of Natural Families of Periodic Motions of Hamiltonian Systems, Preprint No. 9, Institute of Theoretical Astronomy of the Academy of Sciences of the USSR, Moscow, 1990, 32 pp.
    [19] Sokolskiy, A. G. and Khovanskiy, S. A., “On Numerical Continuation of Periodic Motions of a Lagrangian System with Two Degrees of Freedom”, Kosmicheskie Issledovaniya, 21:6 (1983), 851–860 (Russian)  adsnasa
    [20] Lara, M., Deprit, A., and Elipe, A., “Numerical Continuation of Families of Frozen Orbits in the Zonal Problem of Artificial Satellite Theory”, Celestial Mech. Dynam. Astronom., 62:2 (1995), 167–181  crossref  mathscinet  zmath  adsnasa
    [21] Lara, M. and Peláez, J., “On the Numerical Continuation of Periodic Orbits: An Intrinsic, $3$-Dimentional, Differential, Predictor-Corrector Algorithm”, Astron. Astrophys., 389:2 (2002), 692–701  crossref  mathscinet  zmath
    [22] Sukhov, E. A. and Bardin, B. S., “On the Algorithm for Numerical Computation of Periodic Motions of a Hamiltonian System with Two Degrees of Freedom”, Abstracts of the 14th All-Russian Conf. on Problems of Dynamics, Physics of Plasma Particles and Optoelectronics, The 14th All-Russian Conf. on Problems of Dynamics, Physics of Plasma Particles and Optoelectronics (Moscow, RUDN, 2018)
    [23] Sukhov, E. A., “Analytical and Numerical Computation and Study of Long-Periodic Motions Originating from Hyperboloidal Precession of a Symmetric Satellite”, Proc. of hte 8th Polyahov Readings, The 8th Polyahov Readings (St. Petersburg, St. Petersburg State University, 2018)
    [24] Schmidt, D. S., “Periodic Solutions near a Resonant Equilibrium of a Hamiltonian System”, Celestial Mech., 9 (1974), 81–103  crossref  mathscinet  zmath  adsnasa



    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License