Гринес Вячеслав Зигмундович
603155, Россия, г. Нижний Новгород, ул. Большая Печерская, д. 25/12
Национальный исследовательский университет «Высшая школа экономики»
Publications:
Баранов Д., Гринес В. З., Починка О. В., Чилина Е. Е.
Подробнее
In this paper, following J. Nielsen, we introduce a complete characteristic of orientationpreserving
periodic maps on the two-dimensional torus. All admissible complete characteristics
were found and realized. In particular, each of the classes of orientation-preserving periodic
homeomorphisms on the 2-torus that are nonhomotopic to the identity is realized by an algebraic
automorphism. Moreover, it is shown that the number of such classes is finite. According to
V. Z. Grines and A.Bezdenezhnykh, any gradient-like orientation-preserving diffeomorphism of
an orientable surface is represented as a superposition of the time-1 map of a gradient-like flow
and some periodic homeomorphism. Thus, the results of this work are directly related to the
complete topological classification of gradient-like diffeomorphisms on surfaces.
|
Гринес В. З., Жужома Е. В.
Подробнее
The paper is devoted to an investigation of the genus of an orientable closed surface $M^2$
which admits $A$-endomorphisms whose nonwandering set contains a one-dimensional strictly
invariant contracting repeller $\Lambda_r^{}$ with a uniquely defined unstable bundle and with
an admissible boundary of finite type. First, we prove that, if $M^2$ is a torus or a
sphere, then $M^2$ admits such an endomorphism. We also show that, if $ \Omega$ is a basic set with a uniquely defined unstable bundle of the endomorphism $f\colon M^2\to M^2$ of a closed orientable surface $M^2$ and $f$ is not a diffeomorphism, then $ \Omega$ cannot be a Cantor type expanding attractor. At last, we prove that, if $f\colon M^2\to M^2$ is an $A$-endomorphism whose nonwandering set consists of a finite number of isolated periodic sink orbits and a one-dimensional strictly invariant contracting repeller of Cantor type $\Omega_r^{}$ with a uniquely defined unstable bundle and such that the lamination consisting of stable manifolds of $\Omega_r^{}$ is regular, then $M^2$ is a two-dimensional torus $\mathbb{T}^2$ or a two-dimensional sphere $\mathbb{S}^2$.
|
Гринес В. З., Круглов Е. В., Починка О. В.
Подробнее
This paper is devoted to the topological classification of structurally stable diffeomorphisms of the two-dimensional torus whose nonwandering set consists of an orientable one-dimensional attractor and finitely many isolated source and saddle periodic points, under the assumption that the closure of the union of the stable manifolds of isolated periodic points consists of simple pairwise nonintersecting arcs. The classification of one-dimensional basis sets on surfaces has been exhaustively obtained in papers by V. Grines. He also obtained a classification of some classes of structurally stable diffeomorphisms of surfaces using combined algebra-geometric invariants. In this paper, we distinguish a class of diffeomorphisms that admit purely algebraic differentiating invariants. |
Гринес В. З., Куренков Е. Д.
Подробнее
Хорошо известно, что топологическая классификация динамических систем с гиперболической динамикой существенным образом определяется динамикой на неблуждающем множестве. Ф.Пшитыцким было дано обобщение аксиомы $A$, ранее введенной С.Смейлом для диффеоморфизмов, на случай гладких эндоморфизмов, а также доказана теорема о спектральном разложении, утверждающая, что неблуждающее множество $A$-эндоморфизма представляется в виде объединения базисных множеств. В настоящей работе приводится критерий того, что базисное множество является аттрактором. Кроме того, изучается динамика на базисных множествах коразмерности один. Показано, что если базисное множество типа $(n−1, 1)$ является аттрактором и топологическим подмногообразием коразмерности один, то оно является гладко вложенным подмногообразием, а ограничение эндоморфизма на данное базисное множество является растягивающим эндоморфизмом. Если базисное множество типа $(n, 0)$ является топологическим подмногообразием коразмерности один, то оно является репеллером, а ограничение эндоморфизма на данное базисное множество является растягивающим эндоморфизмом. |
Гринес В. З., Гуревич Е. Я., Жужома Е. В., Зинина С. Х.
Подробнее
В работе выделены свойства трехмерного фазового пространства и динамики диффеоморфизма Морса–Смейла на нем, гарантирующие существование по крайней мере одной гетероклинической кривой в блуждающем множестве. Этот результат применяется для решения проблемы о существовании сепараторов в магнитном поле плазмы.
|
Гринес В. З., Левченко Ю. А., Починка О. В.
Подробнее
Рассматривается класс диффеоморфизмов, заданных на трехмерных многообразиях и удовлетворяющих аксиоме A С. Смейла в предположении, что неблуждающее множество каждого диффеоморфизма состоит из поверхностных двумерных базисных множеств. Исследована взаимосвязь между динамикой такого диффеоморфизма и топологией несущего многообразия. Также установлено, что каждый рассматриваемый диффеоморфизм является Ω-сопряженным модельному диффеоморфизму, заданному на многообразии, являющемся локально тривиальным расслоением над окружностью со слоем тор. При некоторых ограничениях на асимптотическое поведение двумерных инвариантных многообразий точек базисных множеств получена топологическая классификация структурно устойчивых диффеоморфизмов из рассматриваемого класса.
|