|
References
|
|
[1] |
Auckly, D., Kapitanski, L., and White, W., “Control of Nonlinear Underactuated Systems”, Comm. Pure Appl. Math., 53:3 (2000), 354–369 |
[2] |
Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E., and Sánchez de Alvarez, G., “Stabilization of Rigid Body Dynamics by Internal and External Torques”, Automatica, 28:4 (1992), 745–756 |
[3] |
Bloch, A. M., Leonard, N. E., and Marsden, J. E., “Stabilization of Mechanical Systems Using Controlled Lagrangians”, Proc. of the 36th IEEE Conf. on Decision and Control, 1997, 2356–2361 |
[4] |
Bloch, A. M., Leonard, N. E., and Marsden, J. E., “Controlled Lagrangians and the Stabilization of Mechanical Systems: 1. The First Matching Theorem”, IEEE Trans. Automat. Contr., 45:12 (2000), 2253–2270 |
[5] |
Bloch, A. M., Chang, D. E., Leonard, N. E., and Marsden, J. E., “Controlled Lagrangians and the Stabilization of Mechanical Systems: 2. Potential Shaping”, IEEE Trans. Automat. Contr., 46:10 (2001), 1556–1571 |
[6] |
Chang, D. E., “The Method of Controlled Lagrangians: Energy Plus Force Shaping”, SIAM J. Control and Optimization, 48:8 (2010), 4821–4845 |
[7] |
Chang, D. E., “Stabilizability of Controlled Lagrangian Systems of Two Degrees of Freedom and One Degree of Under-Actuation”, IEEE Trans. Automat. Contr., 55:8 (2010), 1888–1893 |
[8] |
Chang, D. E., “Generalization of the IDA-PBC Method for Stabilization of Mechanical Systems”, Proc. of the 18th Mediterranean Conf. on Control & Automation, 2010, 226–230 |
[9] |
Chang, D. E., “On the Method of Interconnection and Damping Assignment Passivity-Based Control for the Stabilization of Mechanical Systems”, Regul. Chaotic Dyn., 19:5 (2014), 556–575 |
[10] |
Chang, D. E., Bloch, A. M., Leonard, N. E., Marsden, J. E., and Woolsey, C., “The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems”, ESAIM Control Optim. Calc. Var., 8 (2002), 393–422 |
[11] |
Grillo, S., Salomone, L., and Zuccalli, M., “On the Relationship between the Energy Shaping and the Lyapunov Constraint Based Methods”, J. Geom. Mech., 9:4 (2017), 459–486 |
[12] |
Hamberg, J., “General Matching Conditions in the Theory of Controlled Lagrangians”, Proc. of the 38th IEEE Conf. on Decision and Control (Phoenix, Ariz., 1999), v. 3, 2519–2523 |
[13] |
Khalil, H. K., Nonlinear Systems, 3rd ed., Prentice Hall, Upper Saddle River, N.J., 2002, 750 pp. |
[14] |
Krishnaprasad, P. S., “Lie – Poisson Structures, Dual-Spin Spacecraft and Asymptotic Stability”, Nonlinear Anal., 9:10 (1985), 1011–1035 |
[15] |
Ortega, R., Spong, M. W., Gómez-Estern, F., and Blankenstein, G., “Stabilization of a Class of Underactuated Mechanical Systems via Interconnection and Damping Assignment”, IEEE Trans. Autom. Control, 47:8 (2002), 1218–1233 |
[16] |
van der Schaft, A. J., “Stabilization of Hamiltonian Systems”, Nonlinear Anal., 10:10 (1986), 1021–1035 |
[17] |
Woolsey, C., Reddy, Ch. K., Bloch, A. M., Chang, D. E., Leonard, N. E., and Marsden, J. E., “Controlled Lagrangian Systems with Gyroscopic Forcing and Dissipation”, Eur. J. Control, 10:5 (2004), 478–496 |