Asymptotic Stabilizability of Underactuated Hamiltonian Systems With Two Degrees of Freedom

    Received 30 April 2019

    2019, Vol. 15, no. 3, pp.  309-326

    Author(s): Grillo S. D., Salomone L. M., Zuccalli M.

    For an underactuated (simple) Hamiltonian system with two degrees of freedom and one degree of underactuation, a rather general condition that ensures its stabilizability, by means of the existence of a (simple) Lyapunov function, was found in a recent paper by D.E. Chang within the context of the energy shaping method. Also, in the same paper, some additional assumptions were presented in order to ensure also asymptotic stabilizability. In this paper we extend these results by showing that the above-mentioned condition is not only sufficient, but also necessary. And, more importantly, we show that no additional assumption is needed to ensure asymptotic stabilizability.
    Keywords: underactuated systems, Hamiltonian systems, asymptotic stability, Lyapunov functions
    Citation: Grillo S. D., Salomone L. M., Zuccalli M., Asymptotic Stabilizability of Underactuated Hamiltonian Systems With Two Degrees of Freedom, Rus. J. Nonlin. Dyn., 2019, Vol. 15, no. 3, pp.  309-326
    DOI:10.20537/nd190309


    Download File
    PDF, 311.43 Kb

    References

    [1] Auckly, D., Kapitanski, L., and White, W., “Control of Nonlinear Underactuated Systems”, Comm. Pure Appl. Math., 53:3 (2000), 354–369  crossref  mathscinet  zmath
    [2] Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E., and Sánchez de Alvarez, G., “Stabilization of Rigid Body Dynamics by Internal and External Torques”, Automatica, 28:4 (1992), 745–756  crossref  mathscinet  zmath
    [3] Bloch, A. M., Leonard, N. E., and Marsden, J. E., “Stabilization of Mechanical Systems Using Controlled Lagrangians”, Proc. of the 36th IEEE Conf. on Decision and Control, 1997, 2356–2361  mathscinet
    [4] Bloch, A. M., Leonard, N. E., and Marsden, J. E., “Controlled Lagrangians and the Stabilization of Mechanical Systems: 1. The First Matching Theorem”, IEEE Trans. Automat. Contr., 45:12 (2000), 2253–2270  crossref  mathscinet  zmath
    [5] Bloch, A. M., Chang, D. E., Leonard, N. E., and Marsden, J. E., “Controlled Lagrangians and the Stabilization of Mechanical Systems: 2. Potential Shaping”, IEEE Trans. Automat. Contr., 46:10 (2001), 1556–1571  crossref  mathscinet  zmath
    [6] Chang, D. E., “The Method of Controlled Lagrangians: Energy Plus Force Shaping”, SIAM J. Control and Optimization, 48:8 (2010), 4821–4845  crossref  mathscinet  zmath
    [7] Chang, D. E., “Stabilizability of Controlled Lagrangian Systems of Two Degrees of Freedom and One Degree of Under-Actuation”, IEEE Trans. Automat. Contr., 55:8 (2010), 1888–1893  crossref  mathscinet  zmath
    [8] Chang, D. E., “Generalization of the IDA-PBC Method for Stabilization of Mechanical Systems”, Proc. of the 18th Mediterranean Conf. on Control & Automation, 2010, 226–230
    [9] Chang, D. E., “On the Method of Interconnection and Damping Assignment Passivity-Based Control for the Stabilization of Mechanical Systems”, Regul. Chaotic Dyn., 19:5 (2014), 556–575  mathnet  crossref  mathscinet  zmath  adsnasa
    [10] Chang, D. E., Bloch, A. M., Leonard, N. E., Marsden, J. E., and Woolsey, C., “The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems”, ESAIM Control Optim. Calc. Var., 8 (2002), 393–422  crossref  mathscinet  zmath
    [11] Grillo, S., Salomone, L., and Zuccalli, M., “On the Relationship between the Energy Shaping and the Lyapunov Constraint Based Methods”, J. Geom. Mech., 9:4 (2017), 459–486  crossref  mathscinet  zmath
    [12] Hamberg, J., “General Matching Conditions in the Theory of Controlled Lagrangians”, Proc. of the 38th IEEE Conf. on Decision and Control (Phoenix, Ariz., 1999), v. 3, 2519–2523
    [13] Khalil, H. K., Nonlinear Systems, 3rd ed., Prentice Hall, Upper Saddle River, N.J., 2002, 750 pp.  zmath
    [14] Krishnaprasad, P. S., “Lie – Poisson Structures, Dual-Spin Spacecraft and Asymptotic Stability”, Nonlinear Anal., 9:10 (1985), 1011–1035  crossref  mathscinet  zmath
    [15] Ortega, R., Spong, M. W., Gómez-Estern, F., and Blankenstein, G., “Stabilization of a Class of Underactuated Mechanical Systems via Interconnection and Damping Assignment”, IEEE Trans. Autom. Control, 47:8 (2002), 1218–1233  crossref  mathscinet  zmath
    [16] van der Schaft, A. J., “Stabilization of Hamiltonian Systems”, Nonlinear Anal., 10:10 (1986), 1021–1035  crossref  mathscinet  zmath
    [17] Woolsey, C., Reddy, Ch. K., Bloch, A. M., Chang, D. E., Leonard, N. E., and Marsden, J. E., “Controlled Lagrangian Systems with Gyroscopic Forcing and Dissipation”, Eur. J. Control, 10:5 (2004), 478–496  crossref  mathscinet  zmath



    Creative Commons License
    This work is licensed under a Creative Commons Attribution-NoDerivs 3.0 Unported License