Andrey Shilnikov

    10, Ulyanov Str, 603005 Nizhny Novgorod/
    750 COE, 7th floor, 30 Pryor Street, 30303-3083, Atlanta, USA
    Department of Differential Equations Research Institute for Applied Mathematics & Cybernetics of Nizhny Novgorod University/
    Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia

    Publications:

    Kolomiets M. L., Shilnikov A. L.
    Abstract
    We demonstrate that bifurcations of periodic orbits underlie the dynamics of the Hindmarsh–Rose model and other square-wave bursting models of neurons of the Hodgkin–Huxley type. Such global bifurcations explain in-depth the transitions between the tonic spiking and bursting oscillations in a model.We show that a modified Hindmarsh-Rose model can exhibit the blue sky bifurcation, and a bistability of the coexisting tonic spiking and bursting activities.
    Keywords: Hindmarsh–Rose model, neuron, dynamics, bifurcations, blue sky catastrophe, bistability, tonic spiking, bursting
    Citation: Kolomiets M. L., Shilnikov A. L.,  Qualitative methods for case study of the Hindmarch–Rose model, Rus. J. Nonlin. Dyn., 2010, Vol. 6, No. 1, pp.  23-52
    DOI:10.20537/nd1001003

    Back to the list