G. Belyakova

    10, Ulyanova st., 603005, Nizhny Novgorod, Russia
    Research Institute of Applied Mathematics and Cybernetics, Nizhny Novgorod State University

    Publications:

    Belyakov L. A., Belyakova G. V.
    Abstract
    For a nonlinear Reyleigh-like system with a periodic perturbation, we give some fragments of the study to be connected with the problems of the existence of both chaotic dynamics and invariant tori of certain types. We construct bifurcation diagrams explaining a character of boundaries for regions corresponding to the existence of chaotic dynamics and the invariant tori. Besides, we construct bifurcation curves (for a series of periodic motions) which play the principal role at scenarios of creation of the boundaries pointed out.
    Keywords: dynamical chaos, closed invariant curve, bifurcation set, homoclinic tangency, resonance
    Citation: Belyakov L. A., Belyakova G. V.,  Invariant tori and chaotic dynamics in a nonlinear nonautonomous Reyleigh-like equation, Rus. J. Nonlin. Dyn., 2010, Vol. 6, No. 1, pp.  53-59
    DOI:10.20537/nd1001004

    Back to the list