Lev Kozlov

    Publications:

    Nedelchev S., Kozlov L., Khusainov R. R., Gaponov I.
    Abstract
    Adaptive control and parameter estimation have been widely employed in robotics to deal with parametric uncertainty. However, these techniques may suffer from parameter drift, dependence on acceleration estimates and conservative requirements for system excitation. To overcome these limitations, composite adaptation laws can be used. In this paper, we propose an enhanced composite adaptive control approach for robotic systems that exploits the accelerationfree momentum dynamics and regressor extensions to offer faster parameter and tracking convergence while relaxing excitation conditions and providing a clear physical interpretation. The effectiveness of the proposed approach is validated through experimental evaluation on a 3-DoF robotic leg.
    Keywords: adaptive control, parameter estimation, motion control
    Citation: Nedelchev S., Kozlov L., Khusainov R. R., Gaponov I.,  Enhanced Adaptive Control over Robotic Systems via Generalized Momentum Dynamic Extensions, Rus. J. Nonlin. Dyn., 2023, Vol. 19, no. 4, pp.  633-646
    DOI:10.20537/nd231212

    Back to the list