Alexandr Burov
Publications:
Burov A. A., Kosenko I., Nikonov V. I.
Spacecraft with Periodic Mass Redistribution: Regular and Chaotic Behaviour
2022, Vol. 18, no. 4, pp. 639-649
Abstract
The motion of a spacecraft containing a moving massive point in the central field of Newtonian
attraction is considered. Within the framework of the so-called “satellite approximation”,
the center of mass of the system is assumed to move in an unperturbed elliptical Keplerian orbit.
The spacecraft’s dynamics about its center of mass is studied. Conditions under which the
spacecraft rotates about a perpendicular to the plane of the orbit uniformly with respect to the
true anomaly are found. Such uniform rotations are achieved using a specially selected rule for
changing the position of a massive point with respect to the spacecraft. Necessary conditions for
these uniform rotations are studied numerically. An analysis of the nonintegrability of a special
class of spacecraft’s rotation is carried out using the method of separatrix splitting. Poincaré
sections are constructed for certain parameter values. Several linearly stable periodic motions
are pointed out and investigated.
|
Burov A. A., Nikonov V. I.
Inertial Characteristics of Higher Orders and Dynamics in a Proximity of a Small Celestial Body
2020, Vol. 16, no. 2, pp. 259-273
Abstract
As is well known, many small celestial bodies are of a rather complex shape. Therefore, the
study of the dynamics of a spacecraft in their vicinity, based on terms up to the second order of
smallness in the expansion of the potential of attraction, seems to be insufficient for an adequate
description of the observed dynamical effects related, for example, to positioning of the libration
points.
In this paper, such effects are demonstrated for spacecraft dynamics in the vicinity of
the asteroid (2063) Bacchus. The libration points are computed for various approximations of
the gravitational potential. The results of this computation are compared with similar results
obtained before for the so-called Sludsky – Werner – Scheeres potential. The dependence of the
structure of the regions of possible motions on approximation of the gravitational potential is
also studied.
|
Burov A. A., Guerman A., Raspopova E., Nikonov V. I.
On the use of the $K$-means algorithm for determination of mass distributions in dumbbell-like celestial bodies
2018, Vol. 14, no. 1, pp. 45-52
Abstract
It is well known that several small celestial objects are of irregular shape. In particular, there exist asteroids of the so-called “dog-bone” shape. It turns out that approximation of these bodies by dumb-bells, as proposed by V.V. Beletsky, provides an effective tool for analytical investigation of dynamics in vicinities of such bodies. There remains the question of how to divide reasonably a “dogbone” body into two parts using available measurement data.
In this paper we introduce an approach based on the so-called $K$-mean algorithm proposed by the prominent Polish mathematician H. Steinhaus.
|
Burov A. A., Kosenko I.
Motion of a satellite with a variable mass distribution in a central field of Newtonian attraction
2017, Vol. 13, No. 4, pp. 519–531
Abstract
Within the framework of the so-called satellite approximation, configurations of the relative equilibrium are built and their stability is analyzed. In this case the elliptic Keplerian motion of the satellite/the spacecraft tight group mass center is predefined. The attitude motion of the system does not influence its orbital motion. The principal central axes of inertia are assumed to move as a rigid body. Simultaneously masses of the body can redistribute in a way such that the values of moments of inertia can change. Thus, all configurations can perform pulsing motions changing it own dimensions. One obtains a system of equations of motion for such a compound satellite. It turns out that the resulting system of equations is similar to the well-known equation of V.V.Beletsky for the satellite in elliptic orbit planar oscillations. We use true anomaly as an independent variable as it is in the Beletsky equation. It turned out that there are planar pendulum-like librations of the whole system which may be regarded as perturbations of the mathematical pendulum. One can introduce action-angle variables in this case and can construct the dynamics of mappings over the non-autonomous perturbation period. As a result, one is able to apply the well-known Moser theorem on an invariant curve for twisting maps of annulus. After that one can get a general picture of motion in the case of the system planar oscillations. So, the whole description in the paper splits into two topics: (a) general dynamical analysis of the satellite planar attitude motion using KAM theory; (b) construction of periodic solutions families depending on the perturbation parameter and rising from equilibrium as the perturbation value grows. The latter families depend on the parameter of the perturbation and are absent in the non-perturbed problem. |
Burov A. A., Guerman A., Kosenko I., Nikonov V. I.
On the gravity of dumbbell-like bodies represented by a pair of intersecting balls
2017, Vol. 13, No. 2, pp. 243-256
Abstract
The problem of the motion of a particle in the gravity field of a homogeneous dumbbell-like body composed of a pair of intersecting balls, whose radii are, in general, different, is studied. Approximation for the Newtonian potential of attraction is obtained. Relative equilibria and their properties are studied under the assumption of uniform rotation of the dumbbells.
|
Burov A. A., Nikonov V. I.
Stability and branching of stationary rotations in a planar problem of motion of mutually gravitating triangle and material point
2016, Vol. 12, No. 2, pp. 179-196
Abstract
The planar motion of an equilateral triangle with equal masses at vertices and of a point subjected to mutual Newtonian attraction is considered. Necessary conditions for the stability of “straight”, axial steady configurations, when the massive point is located on one of the symmetry axes of the triangle, are studied. The generation of other, “oblique”, steady configurations is discussed in connection with the variation, for certain parameter values, of the degree of instability of some “straight” steady configurations.
|