M. Malkin

    Gagarin Pr. 23, Nizhny Novgorod, 603950 Russia
    Department of Mathematics and Mechanics, Nizhni Novgorod State University

    Publications:

    Afraimovich V. S., Belyakov L. A., Bykov V. V., Gonchenko S. V., Lerman L. M., Lukyanov V. I., Malkin M. I., Morozov A. D., Turaev D. V.
    Leonid Pavlovich Shilnikov (17.12.1934–26.12.2011)
    2012, Vol. 8, No. 1, pp.  183-186
    Abstract
    Citation: Afraimovich V. S., Belyakov L. A., Bykov V. V., Gonchenko S. V., Lerman L. M., Lukyanov V. I., Malkin M. I., Morozov A. D., Turaev D. V.,  Leonid Pavlovich Shilnikov (17.12.1934–26.12.2011), Rus. J. Nonlin. Dyn., 2012, Vol. 8, No. 1, pp.  183-186
    DOI:10.20537/nd1201015
    Gonchenko S. V., Gonchenko A. S., Malkin M. I.
    Abstract
    Recently, Smale horseshoes of new types, the so called half-orientable horseshoes, were found in [1]. Such horseshoes may exist for endomorphisms of the disk and for diffeomorphisms of nonorientable two-dimensional manifolds as well.They have many interesting properties different from those of the classical orientable and non-orientable horseshoes. In particular, half-orientable horseshoes may have boundary points of arbitrary periods. It is shown from this fact that there are infinitely many types of such horseshoes with respect to the local topological congugacy. To prove this and similar results, an effective geometric construction is used.
    Keywords: Smale horseshoe, local topological conjugacy, hyperbolic set, standard and generalized Henon maps
    Citation: Gonchenko S. V., Gonchenko A. S., Malkin M. I.,  On classification of classical and half-orientable horseshoes in terms of boundary points, Rus. J. Nonlin. Dyn., 2010, Vol. 6, No. 3, pp.  549-566
    DOI:10.20537/nd1003006

    Back to the list